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Abstract

Due to the inherently random and discrete nature of genes, RNAs, and proteins within living cells, there can
be a wide range of variability both over time in a single cell and from cell to cell in a population of genetically
identical cells. Different mechanisms and reaction rates help shape this variability in different ways, and the
resulting cell-to-cell variability can be quantitatively measured using techniques such as time-lapse microscopy
and fluorescence activated cell sorting (or flow cytometry). It has been shown that these measurements can help
to constrain the parameters and mechanisms of stochastic gene regulatory models. In this work, finite state
projection approaches are used to explore the possibility of identifying the parameters of a specific stochastic
model for the genetic toggle switch consisting of mutually inhibiting proteins: LacI and λcI [1, 2]. This article
explores the possibility of identifying the model parameters from different types of statistical information, such as
mean expression levels, LacI protein distributions and LacI-λcI multivariate distributions. It is determined that
although the toggle model parameters cannot be uniquely identified from measurements that track just the LacI
variability, the parameters could be identified from measurements of the cell-to-cell variability in both regulatory
proteins. Based upon the simulated data and the computational investigations of this study, experiments are
proposed that could enable this identification.

1 Introduction

A key issue facing modelers of gene regulatory systems is that rare chemical components (e.g., genes, RNA
molecules, and proteins) can lead to large amounts cellular variability [3, 4, 5, 6, 7, 8, 9]. This variability has
attracted much recent attention, and it is well established that different system mechanisms will affect variability
in different manners. In some systems, variability enhances dynamic signals via stochastic focussing [10]; in other
cases it may cause or enhance resonant fluctuations [11]; some other network topologies may result in stochastic
switching [12, 13, 14, 15]; and in many systems deleterious variability may be repressed [16].

There are a number of well-established experimental techniques in which fluorescent markers are used to
highlight the molecular variability of single cells[17]. The most common of these techniques is flow cytometry [18],
which enables researchers to perform hundreds of millions of controlled single cell experiments all at the same
time. For this technique, cell strains can be engineered to express fluorescent proteins such as green, yellow or
cyan fluorescent protein (gfp, yfp,cfp), all of which can be measured in a fraction of a second for each cell. Different
cultures of the same cell strain can be perturbed with different inputs, at different levels, and at different times.
A researcher can measure a million cells in a minute and test forty or more different conditions in a single hour.
And, unlike population level and/or in vitro techniques for measuring biological parameters (gels, immunoblotting,
etc...), the cells can be grown naturally throughout the experiment, and measurements are made on individual
living cells.

The more recently discovered technique of single molecule fluorescence in situ hybridization (FISH, [19]) al-
lows researchers to tag and count specific mRNA populations in individual fixed cells. With automated imaging
techniques it is possible to count mRNA molecules in thousands of individual cells, thereby obtaining precise
distributions under carefully controlled experimental conditions. Flow cytometry and FISH based single cell
microscopy are highly complementary approaches to study variability. Whereas cytometry with fluorescent pro-
teins can measure post-translational activity, single cell microscopy with FISH mRNA markings can measure
pre-translational regulation. Although flow cytometry allows for the measurement of more individual cells, single
cell microscopy allows for more precise measurements of individual cells.

Using either or both experimental approaches, the measured variability in gene expression offers a surprisingly
rich source of information about system parameters and dynamics. This vast amount of data is often far more
complicated to analyze, and in many computational studies, cell-to-cell variability has been viewed as a computa-
tional nuisance–a viewpoint that isn’t helped by the term “noise,” which is frequently attached to this variability.
If one does not include intrinsic variability in a model, then one cannot hope to capture certain cellular behaviors.
However, in many cases, the inclusion of model stochasticity results in an explosion of computational complexity.
For many other cases, the intrinsic variability of gene regulation can be analyzed techniques such as kinetic Monte
Carlo algorithms [20] and stochastic differential equation approaches [21]. In turn, these KMC approaches have
been improved with various sampling approaches [22, 23], τ leaping approaches [24], and time scale separation
schemes [25, 26]. In a different direction, many researchers have sought to directly solve for the evolution of
probability distributions using various techniques such as linear noise approximations [27, 28], moment closure
[29, 30] and matching [31] techniques, moment generating functions [32], spectral methods [33] and finite state
projection approaches [34, 35, 36, 37]. At present, none of these approaches suffices to handle all systems, and
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there remains much work to be done to improve our computational capabilities. However, as these tools develop,
it becomes more possible to overcome the obstacle of intrinsic noise and gain significant benefits from analytical
studies.

When it is possible to overcome the obstacles presented by cellular variability, the inclusion of system stochas-
ticity can reveal a wealth of additional information regarding the dynamics of biochemical networks. Analyses
of how variability is affected by different regulatory architectures provide a new tool with which to compare and
contrast different possibilities for evolutionary design [38]. Alternatively, when this design is not known a priori,
analyses of cellular variability may help to discover it [39, 40, 41]. For example, different logical structures such as
AND or OR gates can be discovered in two component regulatory systems by examining the stationary transmis-
sion of the cell variability through the network [39], or correlations of different aspects of cell expression at many
time points can reveal different causal relationships between genes within a network [40]. Similarly, measuring and
analyzing the statistics of gene regulatory responses in certain conditions can help to identify system parameters
and develop quantitative, predictive models for certain systems [42, 43].

In this article, we use computational analyses to demonstrate the usefulness of combining stochastic analyses
and single cell measurements to identify gene regulatory models. We follow a similar approach to that in [42] in
that we will apply finite state projection (FSP–[34, 36, 37]) tools to conduct stochastic analyses and parameter
identification for the genetic toggle switch from [1, 2]. In the following section, we provide a brief background
on previous analyses of the toggle switch, and we discuss the application of FSP analysis tools to this system.
Then, in Section 3 we use these tools and simulated data to determine the types of additional experiments that
are necessary to fully identify the parameters of the toggle model. Finally, in Section 4 we summarize our findings
and make a few concluding remarks.

2 Background

The toggle switch, composed of the mutually inhibiting genes lacI and λcI, was first constructed and presented
in [1] and then extended in [2] to be used as a sensor of environmental influences, such as radiation or external
chemical signals. This switch is a construction of two genes, each of whose protein, λcI or LacI, inhibits the
production of the other (see Fig. 1A). With exposure to Ultraviolet light (UV) or mitomycin C (MMC), the SOS
pathway results in RecA coproteases, which increase the degradation rate of λcI. As a result, different amounts of
UV or MMC change the trade-off between λcI and LacI molecules. The output of the mechanism is GFP, which is
also controlled by the same promoter as lacI and is assumed to be expressed at the same level as LacI. Depending
upon environmental conditions, the system exhibits a bias toward one phenotype or another (i.e., it either has
a high level of LacI and GFP and is highly fluorescent or it has a high level of λcI and is not fluorescent). A
vast number of models have been proposed to describe this and other toggle switches, including deterministic [2]
and stochastic versions [44, 15, 45] to name a few. This study considers a particular stochastic model similar to
that in [15] and aims to determine the types of experimental data necessary to determine the model parameters.
To explore these requirements, we use simulated data of the type that can be measured using flow cytometry
experiments such as those conducted in [2].

The stochastic model of the toggle switch is composed of four non-linear production / degradation reactions
given by:

R1 ; R2 ; R3 ; R4

∅ → λcI ; λcI→ ∅ ; ∅ → LacI ; LacI→ ∅. (1)

The rates of these reactions, w(λcI,LacI,Λ) = [w1(λcI,LacI,Λ), . . . , w4(λcI,LacI,Λ)] depend upon the popula-
tions of the proteins, λcI and LacI, as well as the set of non-negative parameters,
{k(0,1)
λcI , αLacI, ηLacI, k

(0,1)
LacI , αλcI, ηλcI, δLacI, δλcI}, according to:

w1 = k
(0)
λcI +

k
(1)
λcI

1 + αLacI [LacI]ηLacI
; w2 = δλcI[λcI];

w3 = k
(0)
LacI +

k
(1)
LacI

1 + αλcI[λcI]ηλcI
; w4 = δLacI[LacI],

In the model, the λcI degradation parameter, δλcI, takes on different values depending upon environmental influ-
ences such as UV radiation, while the remaining nine parameters are assumed to be independent of environmental
conditions. Thus, the full parameters set is represented by:
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Λ = {k(0,1)
λcI , αLacI, ηLacI, k

(0,1)
LacI , αλcI, ηλcI, δLacI}, {δλcI(0), δλcI(6), δλcI(12)} ∈ {R9

≥0,R3
≥0}.

At present there is insufficient evidence to define every parameter of the toggle switch model, and the current
study relies upon simulated data in an effort to determine what additional experiments are necessary. To generate
this data, we have chosen a reference parameter set as follows:

k
(0)
λcI = 6.8× 10−5 s−1 k

(1)
λcI = 1.6× 10−2 s−1 αLacI = 6.1× 10−3 N−ηLacI

k
(0)
LacI = 2.2× 10−3 s−1 k

(1)
LacI = 1.7× 10−2 s−1 αλcI = 2.6× 10−3 N−ηλcI

ηLacI = 2.1× 10−0 ηλcI = 3.0× 10−0 δLacI = 3.8× 10−4 N−1s−1

δλcI(0) = 3.8× 10−4 N−1s−1 δλcI(6) = 6.7× 10−4 N−1s−1 δλcI(12) = 1.5× 10−3 N−1s−1,

(2)

where the notation N corresponds to the integer number of molecules of the relevant reacting species. These
parameters have been chosen partially to match values in the literature and partially to match the qualitative
behaviors of the measured fluorescence histograms from [2] (i.e. the model expresses a small amount of LacI at
low UV levels, a large amount of LacI at higher UV levels and has a bimodal distribution at intermediate UV
levels–see Fig. 1). In the context of the current study, the most important of these parameters are the half-lives
of LacI and λcI, which effectively set the timescale of the system’s transient responses. Since both proteins are
extremely stable and have half-lives that are much longer than the cell division time, δλcI(0) and δLacI(0) have
both been set to match a dilution half live of 30 minutes (cell division time). The cooperativity of λcI binding, ηλcI

is chosen to be 3 to reflect the three binding sites of λcI to the PL promoter. The cooperativity of LacI binding,
ηLacI is set to 2.1 as identified in [42]. The remaining parameters have been chosen to match the qualitative
behavior of the system as measured in [2] at the different levels of UV radiation.

At this point, no attempt has yet been made to fit the quantitative values of these parameters for the current
model. For such a fit to provide much insight, one would first need to calibrate for background fluorescence and
allow for the extrinsic variability in gfp fluorescence as explored in [42]. This would require far more experimental
data than is currently available for this system. With the use of 96- and 384-well plate auto-samplers, today’s
flow cytometry equipment is capable of providing this additional information for little additional experimental
cost, and the acquisition of this data will not be a limiting step in the identification process.

2.1 Stochastic Analysis of the Toggle Switch

By assuming that cells constitute a well-mixed environment, one can model biochemical populations with a
jump-Markov process. As mentioned above, there are numerous approaches to analyze such processes, and many
researchers are actively involved in developing new approaches. For the purpose of this examination, the choice
of method does not matter, so long as it provides an accurate and efficient solution. Because the finite state
projection (FSP -[34, 35, 46, 36, 37]) approach provides a direct accuracy guarantee on the solution of the master
equation, it is a natural choice with which to conduct this investigation. In this subsection, we provide a brief
background on the use of the FSP approach for the modeling of the toggle switch.

Under the reactions presented in the preceding section, the joint probability density of having i molecules of
LacI and j molecules of λcI evolves according the set of linear ordinary differential equations,

dpi,j(t,Λ)

dt
= −

4X
k=1

wk(i, j,Λ)pi,j(t,Λ)

+ w1(j,Λ)pi−1,j(t,Λ) + w2(i+ 1,Λ)pi+1,j(t,Λ)

+ w3(i,Λ)pi,j−1(t,Λ) + w4(j + 1,Λ)pi,j+1(t,Λ),

which is typically known as the (chemical) Master Equation [27]. Because the toggle reaction rates, w1 and w2,
are non-linear, the ME has no known closed form solution, but the finite state projection approach [34, 36] allows
us to approximate the solution to any pre-specified degree of accuracy. Given the infinitesimal generator matrix,
A(Λ), the initial probability distribution, P(0), and a chosen error tolerance, ε > 0, we can systematically find a
finite projection system ṖFSP (t,Λ) = AJ(Λ) ·PFSP (t,Λ) such that:˛̨̨̨»

PJ(t,Λ)
PJ′(t,Λ)

–
−
»

PFSP (t,Λ)
0

–˛̨̨̨
1

≤ ε, and PFSP (0) = PJ(0), (3)

where the index vector J denotes the set of states included in the projection, PJ is the corresponding probabilities
of those states, and AJ is the corresponding principle submatrix of A [34, 36].
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For this study, we have chosen the projection set, J , to include all states that satisfy: i ≤ N1, j ≤ N2, and
(i− 3)(j − 3)2 ≤ N3, where the values of N1, N2, and N3 are allowed to increase until the projection error, ε, is
less than 10−6. The actual expansion is carried out as described in [46], where the values of N1, N2 and N3 are
increased depending upon the dominant directions of probability leakage out of the current projection space (see
Section 2.1 of [46] for more details). For the reference parameter set the final projection space is defined by the
triplet (N1, N2, N3) = (90, 90, 18400) for the case with 0J/m2 UV radiation, (N1, N2, N3) = (50, 110, 17600) for
the case with 6J/m2 UV radiation, and (N1, N2, N3) = (30, 110, 12800) for the case with 12J/m2 UV radiation.
Other parameter sets require different projection spaces to reach the desired error tolerance, and the projection
space is expanded and contracted during each parameter search.

2.2 Fitting the Toggle Model to Simulated Data

In most cases, the full joint probability distribution is not measured, and only an expected value or marginal dis-
tribution is to be considered. To explore how different quantities of information may lead to different identification
results, we consider identification strategies using five such statistical quantities:

(1) Only the mean level of LacI, denoted as µLacI.
(2) The mean levels of LacI and λcI, denoted as µ{LacI,λcI} := {µLacI, µλcI}.
(3) The marginal distribution of LacI, denoted as fLacI.
(4) The marginal distributions of LacI and λcI, denoted as f{LacI,λcI} := {fLacI, fλcI}.
(5) The full joint distributions of LacI and λcI, denoted as Full P.

Each of these is naturally represented as a linear projection of the full distribution. For example, the mean level
of LacI and the marginal distribution of LacI are given by:

µLacI(Λ, t) =

∞X
i=0

∞X
j=0

ipi,j(Λ, t), and fLacI(Λ, t) =

∞X
j=0

pi,j(Λ, t)

Equivalently, one could write each of the statistical quantities (1)-(5) above in matrix form as y(Λ, t) = CP(Λ, t),
where the output matrix C depends upon the statistical quantity to be considered. We note that if all of the
reaction rates were affine linear, then the mean behaviors of µLacI and µλcI would be equivalent to the deterministic
mass action kinetics model of the same system. Because the toggle model has non-linear production terms, this
equivalence does not hold. It is also important to note that the toggle switch gives rise to a relatively complicated
bimodal distribution, which is not adequately be described with a small number of statistical moments, so low
order moment based approaches such as those in [27, 28, 29, 30, 31] should be expected to yield incorrect results
for this model.

With the FSP solution approach in hand, the identification procedure is relatively simple–we find the parameter
arguments, Λ?, that minimizes the difference between the measured statistical quantity, ỹ(t), and the numerical
solution of that quantity, y(Λ, t):

Λ? := argminΛ |ỹ(t)− y(t,Λ)|p . (4)

More specifically, because we will frequently be comparing probability distributions, we use the one-norm (i.e.,
p = 1) difference for a number of reasons: First, the FSP approach (Eqn. 3) directly computes the exact 1-norm
error in the solution of the master equation, which then provides exact bounds on the 1-norm difference between
a measured and predicted distributions. Second, the 1-norm of any probability distribution is exactly one and the
1-norm difference between two distributions lies between zero for a perfect match and two for a perfect mismatch.
Finally, in our experience 1-norm optimizations provide distributions that better match the full qualitative shape
of measured distributions, whereas other norms (such as the Euclidian norm) apply too much importance to peaks
of these distributions, independent of how much probability measure is contained in those peaks.

In this study, we begin each minimization in (4) with the same initial guess:

k
(0)
λcI = 10−4 s−1 k

(1)
λcI = 10−2 s−1 αLacI = 10−2 N−ηLacI

k
(0)
LacI = 10−3 s−1 k

(1)
LacI = 10−2 s−1 αλcI = 10−3 N−ηλcI

ηLacI = 3 ηλcI = 3 δLacI = 10−4 N−1s−1

δλcI(0) = 10−4 N−1s−1 δλcI(6) = 10−3 N−1s−1 δλcI(12) = 10−3 N−1s−1.

and then update this guess with iterations of gradient-based and simulated annealing searches until the objective
function has decreased by at least two orders of magnitude. In the numerical studies presented here, it is known
a priori that the “true” parameter set gives an exact match and satisfies this criteria for any p-norm. If the
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optimization terminates at a much different parameter set, then the identification is not unique for the data
set ỹ. In more realistic practice, local minima must be discarded by using multiple, randomly generated initial
parameter guesses. In that case, an optimal parameter set would be considered to be unique if the given solution
yields the smallest achieved value for the objective function and if that parameter has been repeatedly found
during independent optimization procedures.

3 Results

The model in the previous section and the parameters in (2) have been used to numerically generate the joint
probability distribution of the numbers of LacI and λcI molecules. We have assumed an initial condition of zero
molecules of each species, and have solved the master equation for the distribution at times of {1,2,3,4,5} hours
later. In this section, we consider each of the five identification strategies listed above and examine how successful
each approach may be for this identification. For each strategy, we first consider the identification using the
relevant data at 5hrs only and later with the same information at all five time points. Each identification strategy
results in a parameter set that captures the relevant data to within a one norm difference of 10−1, and Tables
1 and 2 list the relative values of these identified parameters. In most cases, the identification is insufficiently
constrained, and the identified parameter set is not unique (i.e., it is different than the original parameter set).
For these, the parameter set may match some portions of the simulated data, but not others. Table 3 tabulates
these differences for the ten different parameter sets. We note that the numbers in Tables 1-3 should be viewed
as qualitative results as the identified parameters sets {1-4,6,7} depend upon the initial guess and are not unique.

3.1 Identification from a single time point.

Table 1 lists the relative values of the identified parameters compared to their actual values (Reference set #0).
These parameters have been identified from different statistical quantities taken from the simulated data at a time
of 1 hour. The following subsections discuss the corresponding success or failures in these identification attempts.

3.1.1 Identification using mean level of LacI at t = 5hr.

In many modeling endeavors, researchers concentrate their efforts solely on matching the mean behaviors of the
observable systems. In other situations, there are often good reasons for this choice. First, most experimental
measurements are taken at the population level using lysed cells, and data on the cell-to-cell variability is not
available. Second, if one is only interested in the mean level behavior, then it is often possible to utilize deter-
ministic models, which are typically more computationally tractable. These reasons are far less compelling in
this situation. When all measurements are taken using flow cytometry or another single cell technique, data on
cell-to-cell variability is readily available. It would be a waste to ignore this information. Furthermore, due to
strong nonlinearities in the LacI and λcI production rates, the corresponding deterministic model fails to capture
the mean behavior of the true stochastic system (results not shown).

We first explore if it is possible to identify the unknown parameters from the mean LacI level, µLacI, at all
three UV radiations levels and at a time of 5 hours. While it is not difficult to find a set of 12 parameters that
match the mean level of LacI under the different levels of ultraviolet radiation, these parameters are not unique.
Indeed, we find that parameter set #1 in Table 1 matches the mean LacI expression levels as can be seen by the
blue bars in Fig. 2A (color online). However, the same parameter set gives a very poor prediction for the mean
level of λcI as shown in Fig. 2B and Table 3. Thus, it is clear that the mean level of lacI is insufficient to identify
the model parameters.

3.1.2 Identification using mean levels of LacI and λcI at t = 5hr.

We next consider the possibility of identifying all twelve parameters from the mean level of both LacI and λcI
for all three UV levels and at a time of five hours after induction. Once again it is easy to find that parameter
set #2 in Table 1 matches these mean levels for both species, as can be seen with the green bars plotted in Figs.
2A,B. On the other hand, closer inspection of the marginal probability distributions of LacI and λcI in (shown in
green lines in Fig. 3A-F) reveals that this parameter set provides a poor prediction for the marginal distributions
of the two chemical species, especially at low levels of UV induction (see Figs. 3{A,B,D,E} and Table 3).
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3.1.3 Identification using marginal distribution of LacI at t = 5hr.

As discussed in [42], if one utilizes information of the cell-to-cell variability, then it become possible to better
distinguish between models and parameter sets. With this in mind, we have attempted to conduct the identification
from the marginal distribution of LacI at five hours after induction with the different levels of UV radiation.
Parameter set #3 in Table 1 has been found to match this marginal distribution. However, we once again discover
that the identification is not unique, which suggests that data regarding the variability of a single protein (i.e., the
kind of data taken in [2]) is not sufficiently rich for complete identifiability. On the other hand, closer inspection
of Table 2 reveals a fixed ratio of about 0.6 between many of the parameters from set #3 and the true parameter
set. This suggests that the identification has drastically narrowed the space of possible parameter sets, but more
information is needed to provide a unique parameter set for the proposed model. For example, we see that
parameter set #3 gives poor prediction for the mean and marginal distribution for λcI as can be seen in Fig. 2B
and Figs. 3{D-F} and Table 3. Thus, any additional measurements of λcI would help to further constrain the
model.

3.1.4 Identification using marginal distribution of both LacI and λcI at t = 5hr.

Parameter set #4 has been identified from the simulated data using the marginal distributions of both species at
all UV radiation levels and at the time of five hours after induction. Now the identified set correctly matches the
mean and marginal distributions of LacI and λcI as shown in Figs. 2 and 3. However, there still remains a slight
discrepancy between the full joint distribution as computed with the reference parameter set and the same joint
distribution as computed with parameter set #4 (see Table 3).

3.1.5 Identification using the full joint LacI/λcI distribution at t = 5hr.

Table 3 shows that the joint distribution predicted by parameter sets #1-4 are different than the joint distribution
found with the reference parameter set, suggesting that use of this full distribution would go a long way to further
constraining the model. In our final attempt to identify the full parameter set from a single time point, we have
conducted the identification based upon the full joint distribution of LacI and λcI at the time of 5 hours. In this
case, it appears that identification of the parameters is indeed possible, and all of the parameters are identified
within a very small distance of their actual values. As an aside, it is interesting to note that the optimization
problem that uses the full distribution is much more easily solved than that which utilized only the marginal
distributions. In these studies the identification based upon the whole distribution took less than an hour and
converged to a much lower value than that based upon marginal distributions, which took several days. A full
exploration of how these different data sets lead to better conditioning of the optimization procedure is left for
future work.

3.2 Identification from multiple time points.

From above and from [42], it is clear that more statistical information provides a better chance for a system’s
identifiability. Similarly, it is equally important to conduct that identification using different time points, prefer-
ably during the system’s transient response [42]. In the preceding subsection, we have attempted the identification
based upon a single time point that occurred 5 hours after induction. We note that the degradation rates of LacI
and λcI in the absence of UV radiation correspond to a half life of 30 minutes (i.e., the cell division time) and even
faster with UV radiation. Thus, since the identification is being conducted after ten such half lives, we are likely
missing much of the system’s transient dynamics. We have therefore redone the identification using measurements
at each hour after induction.

Table 2 lists the relative values of the identified parameters as found using this more detailed information.
For a comparison of the system dynamics with the different parameter values, Fig. 4 shows the responses of
the mean LacI and λcI levels. From the figure, it is clear that Parameter Set #6 matches the response of LacI
over time (Panel A), but not that of λcI (squares in Panels D-F). Furthermore, Fig. 4 and Table 3 show that
Parameter Set #7 matches the mean dynamics of both proteins, but is insufficient to complete the identification.
On the other hand, we note that with the additional time points, the marginal distribution of LacI (Parameter
Set #8) does a much better job of obtaining the correct parameter values for the parameters. Finally, even when
the full distribution is used to identify the parameters, the use of multiple time points considerably improves the
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approach–yielding more precise results and making the identification much less sensitive to unbiased measurement
errors.

4 Conclusions

Many gene regulatory systems are characterized by small numbers of regulatory molecules, and therefore result
in a large amount of variability both over time for single cells and from cell to cell in a clonal population. This
variability is measurable with a number of experimental approaches, including time lapse fluorescence microscopy
which can record the fluctuations of individual living cells and flow cytometry which allows for the rapid measure-
ment of large populations of individual cells. To fully access the information available from these measurement
techniques, it is necessary to utilize quantitative stochastic models which can capture these behaviors. Finite
state projection (FSP–[34]) type solutions are ideal for these types of analyses because they specifically compute
the transient dynamics of cell-to-cell probability distributions–precisely the types of information measurable with
flow cytometry. By combining flow cytometry measurements with FSP approaches, it becomes easier to constrain
gene regulatory models and even completely identify models and parameters for natural and synthetic circuits
[42].

Similarly, computational analyses of stochastic gene regulatory models can help researchers to determine the
types of experiments necessary to provide better understanding of a given system. In this work we have used
FSP-based computational studies to explore the possibility of identifying parameters for a particular model of the
genetic toggle switch [1, 2]. Our numerical studies have revealed that different identification strategies will produce
varying degrees of success. As summarized in Table 3, each successive addition of more statistical information
can help to further constrain the space of allowable parameters–eventually leading to a single unique point for
this model. For example, parameters can be found to match the mean (or marginal distribution) of one protein
but not the other. Similarly, models can be found that match the mean behaviors of the system, but which do
not match the marginal distributions of one or more species. Finally, models can be found to match the marginal
distributions of both species, but which do not match the full joint distribution of both species. However, for this
particular model, only one set of parameters is capable of matching the full joint distribution at the time of 5
hours. Similarly, if one uses more experimental time points, then this also can further constrain the model and
lead one to arrive at better models and more useful sets of parameters. In particular, we predict that if one could
measure both LacI and λcI populations in large numbers of individual cells at a time resolution of about an hour,
then one could in principle fully identify the parameters for the proposed model of the gene toggle switch. We
note that models of greater complexity such as those including additional parameters related to transcription,
translation, oligomerizaytion, and other kinetics will require more measurements for complete identification.

The necessary experimental measurements for the identification of the current model could be obtained by
reengineering the toggle switch to express two different fluorescent proteins: one controlled by the same promoter
as LacI and the other controlled by the same promoter as λcI. With an auto-sampler and multiple frequency
fluorescence detectors, these new constructs can then be automatically measured with a time resolution of less
than ten minutes–even including many samples from independent colonies. Furthermore, background fluorescence
levels can be calibrated out of the data using mutants lacking one or both of the reporter proteins, and extrinsic
noise can be decreased using forward and side scatter information (or even flow cytometry images) to restrict
measurements to cells with similar shapes, sizes, and densities. In turn, such a carefully constrained and identified
quantitative model could be used to predict switching behavior under different environmental conditions as well
as help direct the modification of the circuit to meet other synthetic design objectives.
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Parameter Units
Relative Parameter Values

Set 0: Set 1: Set 2: Set 3: Set 4: Set 5:
Ref. Set µLacI µ{LacI,λcI} fLacI f{LacI,λcI} Full P

k
(0)
λcI s−1 6.8×10−5 3.1×100 5.3×100 8.9×100 3.2×100 1.0×100

k
(1)
λcI s−1 1.6×10−2 6.3×10−1 7.6×10−1 5.0×10−1 9.1×10−1 1.0×100

k
(0)
LacI s−1 2.2×10−3 3.0×10−1 9.0×10−1 5.6×10−1 8.0×10−1 1.0×100

k
(1)
LacI s−1 1.7×10−2 2.8×10−1 6.5×10−1 5.7×10−1 8.0×10−1 1.0×100

δLacI N−1s−1 3.8×10−4 2.2×10−1 6.7×10−1 5.6×10−1 8.0×10−1 1.0×100

δλcI(0) N−1s−1 3.8×10−4 2.9×10−1 6.1×10−1 6.7×10−1 9.5×10−1 1.0×100

δλcI(6) N−1s−1 6.7×10−4 5.9×10−1 7.2×10−1 7.2×10−1 9.7×10−1 1.0×100

δλcI(6) N−1s−1 1.5×10−3 1.0×100 1.2×100 5.9×10−1 9.5×10−1 1.0×100

αLacI N−ηLacI 6.1×10−3 1.2×100 2.1×100 7.1e-02 5.9×10−1 1.0×100

αλcI N−ηλcI 2.6×10−3 1.9×10−1 5.4×10−1 4.0×10−3 4.8×10−1 1.0×100

ηLacI −− 2.1×100 1.2×100 9.0×10−1 1.3×100 1.1×100 1.0×100

ηλcI −− 3.0×100 1.1×100 1.1×100 1.7×100 1.1×100 1.0×100

Table 1: Parameter Sets for the stochastic toggle model, which have been identified from different data sets at a
fixed time of five hours. For parameter sets 1-5, the table lists the relative parameter values. The five different data
sets correspond to (1) the mean level of LacI, (2) the mean levels of LacI and λcI, (3) the marginal distribution of
LacI, (4) the marginal distributions of LacI and λcI, and (5) the full joint distribution of LacI and λcI. The model
responses for each of these parameter sets are shown in Figs. 2-5.

Parameter Units
Relative Parameter Values

Set 0: Set 6: Set 7: Set 8: Set 9: Set 10:
Ref. Set µLacI µ{LacI,λcI} fLacI f{LacI,λcI} Full P

k
(0)
λcI s−1 6.8×10−5 7.7×10−7 1.0×100 9.9×10−1 1.0×100 1.0×100

k
(1)
λcI s−1 1.6×10−2 1.3×100 9.7×10−1 1.0×100 1.0×100 1.0×100

k
(0)
LacI s−1 2.2×10−3 1.5×100 1.1×100 1.0×100 1.0×100 1.0×100

k
(1)
LacI s−1 1.7×10−2 9.6×10−1 9.6×10−1 1.0×100 1.0×100 1.0×100

δLacI N−1s−1 3.8×10−4 1.0×100 9.8×10−1 1.0×100 1.0×100 1.0×100

δλcI(0) N−1s−1 3.8×10−4 5.1×10−1 9.7×10−1 1.0×100 1.0×100 1.0×100

δλcI(6) N−1s−1 6.7×10−4 7.5×10−1 9.9×10−1 1.0×100 1.0×100 1.0×100

δλcI(12) N−1s−1 1.5×10−3 8.3×10−1 1.0×100 1.0×100 1.0×100 1.0×100

αLacI N−ηLacI 6.1×10−3 5.7×10−1 9.2×10−1 1.0×100 1.0×100 1.0×100

αλcI N−ηλcI 2.6×10−3 5.2×10−1 5.7×10−1 1.0×100 1.0×100 1.0×100

ηLacI −− 2.1×100 1.2×100 1.0×100 1.0×100 1.0×100 1.0×100

ηλcI −− 3.0×100 1.0×100 1.1×100 1.0×100 1.0×100 1.0×100

Table 2: Parameter Sets for the stochastic toggle model, which have been identified from different data sets at all
of five different measurement times: {1,2,3,4,5} hours. The five different data sets are as listed in Table 1. For
parameter sets 6-10, the table lists the relative parameter values.
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Parameter One Time Point at 5hr All Time Points at {1,2,3,4,5}hr
Set # µLacI µ{LacI,λcI} fLacI f{LacI,λcI} Full P µLacI µ{LacI,λcI} fLacI f{LacI,λcI} Full P

1 < 10−3 1.42 0.78 2.4 2.2 3.2 8.1 10 16 15
2 < 10−3 < 10−3 0.91 1.8 1.3 0.59 1.1 5.5 9.4 6.7
3 0.004 1.4 0.015 1.3 1.4 0.81 8.8 3.9 11.4 8.5
4 0.007 0.017 0.024 0.043 0.072 0.61 1.3 1.4 2.1 1.6
5 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 0.002 0.006 0.007 0.012 0.010
6 0.002 1.7 0.68 2.7 2.3 0.023 7.6 2.8 11.2 11.2
7 0.001 0.006 0.18 0.28 0.19 0.011 0.046 0.72 1.1 0.78
8 < 10−3 0.001 < 10−3 0.001 0.001 < 10−3 0.005 < 10−3 0.005 0.008
9 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

10 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Table 3: The goodness of fit for each parameter set and each subset of considered data. The parameter sets correspond
to the ten different fits found by using different amounts of the simulated data (see Tables 1 and 2). The different
columns show how well each parameter set fits different aspects of the simulated data–the metric used is the one
norm difference between the model with the true parameter set and the identified parameter set. For the mean
values, the metric refers to relative difference (i.e., d = |µmodel − µdata|/µdata).

10



References

[1] T. Gardner, C. Cantor, and J. Collins, “Construction of a genetic toggle switch in escherichia coli,” Nature,
vol. 403, pp. 339–242, 2000.

[2] H. Kobayashi, M. Kaern, M. Araki, K. Chung, T. Gardner, C. Cantor, and J. Collins, “Programmable cells:
Interfacing natural and engineered gene networks,” PNAS, vol. 101, pp. 8414–8419, June 2004.

[3] M. McAdams and A. Arkin, “Its a noisy business!,” Tren. Gen., vol. 15, no. 2, pp. 65–69, 1999.

[4] M. Elowitz, A. Levine, E. Siggia, and P. Swain, “Stochastic gene expression in a single cell,” Science, vol. 297,
pp. 1183–1186, 2002.

[5] M. Thattai and A. van Oudenaarden, “Intrinsic noise in gene regulatory networks,” Proc. Natl. Acad. Sci.,
vol. 98, pp. 8614–8619, 2001.

[6] J. Hasty, J. Pradines, M. Dolnik, and J. Collins, “Noise-based switches and amplifiers for gene expression,”
PNAS, vol. 97, pp. 2075–2080, 2000.

[7] E. Ozbudak, M. Thattai, I. Kurtser, A. Grossman, and A. van Oudenaarden, “Regulation of noise in the
expression of a single gene,” Nature Genetics, vol. 31, pp. 69–73, 2002.

[8] N. Federoff and W. Fontana, “Small numbers of big molecules,” Science, vol. 297, no. 5584, pp. 1129–1131,
2002.

[9] T. Kepler and T. Elston, “Stochasticity in transcriptional regulation: origins, consequences, and mathemat-
ical representations.,” Biophys. J., vol. 81, pp. 3116–3136, 2001.

[10] J. Paulsson, O. Berg, and M. Ehrenberg, “Stochastic focusing: Fluctuation-enhanced sensitivity of intracel-
lular regulation,” PNAS, vol. 97, no. 13, pp. 7148–7153, 2000.

[11] H. Li, Z. Hou, and H. Xin, “Internal noise stochastic resonance for intracellular calcium oscillations in a cell
system,” Phys. Rev. E, vol. 71, no. 061916, 2005.

[12] A. Arkin, J. Ross, and M. H., “Stochastic kinetic analysis of developmental pathway bifurcation in phage
λ-infected escherichia coli cells,” Genetics, vol. 149, pp. 1633–1648, 1998.

[13] D. Wolf and A. Arkin, “Fifteen minutes of fim: Control of type 1 pili expression in e. coli,” OMICS: A
Journal of Integrative Biology, vol. 6, pp. 91–114, Jan. 2002.

[14] B. Munsky, A. Hernday, D. Low, and M. Khammash, “Stochastic modeling of the pap-pili epigenetic switch,”
Proc. FOSBE, pp. 145–148, August 2005.

[15] T. Tian and K. Burrage, “Stochastic models for regulatory networks of the genetic toggle switch,” PNAS,
vol. 103, pp. 8372–8377, May 2006.

[16] Y. Dublanche, K. Michalodimitrakis, N. Kummerer, M. Foglierini, and L. Serrano, “Noise in transcription
negative feedback loops: simulation and experimental analysis,” Molecular Systems Biology, vol. 2, no. 41,
2006.

[17] A. Raj and A. van Oudenaarden, “Single-molecule approaches to stochastic gene expression,” Annual Review
of Biophysics, vol. 38, pp. 255–270, 2009.

[18] H. Shapiro, Practical Flow Cytometry. Wiley-Liss, 4 ed., 2003.

[19] A. Raj, P. van den Bogaard, S. Rifkin, A. van Oudenaarden, and S. Tyagi, “Imaging individual mrna
molecules using multiple singly labeled probes,” Nature Methods, vol. 5, pp. 877–887, 2008.

[20] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” J. Phys. Chem., vol. 81,
pp. 2340–2360, May 1977.

[21] D. T. Gillespie, “The chemical langevin equation,” J. Chem. Phys., vol. 113, pp. 297–306, Jul. 2000.

[22] R. Allen, P. Warren, and P. Rein ten Wolde, “Sampling rare switching events in biochemical networks,” Phys.
Rev. Lett., vol. 94, Jan. 2005.

[23] A. Warmflash, P. Bhimalapuram, and A. Dinner, “Umbrella sampling for nonequilibrium processes,” J.
Chem. Phys., vol. 127, no. 154112, 2007.

[24] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically reacting systems,” J. Chem.
Phys., vol. 115, pp. 1716–1733, Jul. 2001.

11



[25] C. V. Rao and A. P. Arkin, “Stochastic chemical kinetics and the quasi-steady-state assumption: Application
to the gillespie algorithm,” J. Chem. Phys., vol. 118, pp. 4999–5010, Mar. 2003.

[26] Y. Cao, D. Gillespie, and L. Petzold, “The slow-scale stochastic simulation algorithm,” J. Chem. Phys.,
vol. 122, Jan. 2005.

[27] N. van Kampen, Stochastic Processes in Physics and Chemistry. Elsevier, 3 ed., 2007.

[28] J. Elf and M. Ehrenberg, “Fast evaluations of fluctuations in biochemical networks with the linear noise
approximation,” Genome Research, vol. 13, pp. 2475–2484, 2003.

[29] I. Nasell, “An extension of the moment closure method,” Theoretical Population Biology, vol. 64, pp. 233–239,
2003.

[30] C. Gmez-Uribe and G. Verghese, “Mass fluctuation kinetics: Capturing stochastic effects in systems of
chemical reactions through coupled mean-variance computations,” JCP, vol. 126, Jan. 2007.

[31] A. Singh and J. Hespanha, “A derivative matching approach to moment closure for the stochastic logistic
model,” Bulletin of Mathematical Biology, vol. 69, pp. 1909–1925, 2007.

[32] N. Sinitsyn, N. Hengartner, and I. Nemenman, “Adiabatic coarse-graining and simulations of stochastic
biochemical networks,” Proc. Nat. Acad. Sci. U.S.A., vol. 106, no. 26, pp. 10546–10551, 2009.

[33] A. Walczak, A. Mugler, and C. Wiggins, “A stochastic spectral analysis of transcriptional regulatory cas-
cades,” Proc. Nat. Acad. Sci., vol. 106, no. 16, pp. 6529–6534, 2009.

[34] B. Munsky and M. Khammash, “The finite state projection algorithm for the solution of the chemical master
equation,” J. Chem. Phys., vol. 124, no. 044104, 2006.

[35] K. Burrage, M. Hegland, S. Macnamara, and R. Sidje, “A krylov-based finite state projection algorithm for
solving the chemical master equation arising in the discrete modelling of biological systems,” Proc. of The
A.A.Markov 150th Anniversary Meeting, pp. 21–37, 2006.

[36] B. Munsky and M. Khammash, “The finite state projection approach for the analysis of stochastic noise in
gene networks,” IEEE Trans. Automat. Contr./IEEE Trans. Circuits and Systems: Part 1, vol. 52, pp. 201–
214, Jan. 2008.

[37] B. Munsky, The finite State projection Approach for the Solution of the Chemical Master Equation and its
Application to Stochastic Gene Regulatory Networks. PhD thesis, Univ. of California at Santa Barbara, Santa
Barbara, June 2008.

[38] T. Cagatay, M. Turcotte, M. Elowitz, J. Garcia-Ojalvo, and G. Suel, “Architecture-dependent noise discrim-
inates functionally analogous differentiation circuits,” Cell, vol. 139, no. 3, pp. 512–522, 2009.

[39] A. Warmflash and A. Dinner, “Signatures of combinatorial regulation in intrinsic biological noise,” Proc.
Nat. Acad. Sci. USA, vol. 105, no. 45, pp. 17262–17267, 2008.

[40] M. Dunlop, R. Cox III, J. Levine, R. Murray, and M. Elowitz, “Regulatory activity revealed by dynamic
correlations in gene expression noise,” Nature Genetics, vol. 40, pp. 1493–1498, 2008.

[41] W. de Ronde, B. Daniels, A. Mugler, N. Sinitsyn, and I. Nemenman, “Mesoscopic statistical properties of
multistep enzyme-mediated reactions,” IET Syst. Biol., vol. 3, no. 5, pp. 429–437, 2009.

[42] B. Munsky, B. Trinh, and M. Khammash, “Listening to the noise: random fluctuations reveal gene network
parameters,” Molecular Systems Biology, vol. 5, no. 318, 2009.

[43] D. Thorsley and E. Klavins, “Approximating stochastic biochemical processes with wasserstein pseudomet-
rics,” IET Systems Biology, vol. 4, no. 3, pp. 193–211, 2010.

[44] P. Warren and P. Rein ten Wolde, “Chemical models of genetic toggle switches,” J. Phys. Chem. B, vol. 109,
pp. 6812–6823, 2005.

[45] A. Lipshtat, A. Loinger, N. Balaban, and O. Biham, “Genetic toggle switch without cooperative binding,”
Phys. Rev. Lett., vol. 96, no. 188101, 2006.

[46] B. Munsky and M. Khammash, “A multiple time interval finite state projection algorithm for the solution
to the chemical master equation,” J. Comp. Phys., vol. 226, no. 1, pp. 818–835, 2007.

12



0 20 40 600

0.05

0.1

0.15

0 20 40 600

0.05

0.1

0.15

0 20 40 600

0.05

0.1

0.15

λ CI Promoter λ CI Gene

lacI Gene lacI Promoter

λ CILacI∅ ∅

UV or MMCA

B C D

Pr
ob

ab
ilit

y 
De

ns
ity

 

Population of LacI Population of LacI Population of LacI

0 J/m2 UV 6 J/m2 UV 12 J/m2 UV

Figure 1: (A) Basic schematic of the toggle model comprised of two inhibitors: λcI inhibits the production of LacI
and vice-versa. In the model, the synthesis rates of λcI and LacI are non-linear functions of their counterparts.
Environmental influences (ultraviolet radiation) increase the degradation rate of λcI and affect the tradeoff between
the two regulators. (B-D) Marginal probability distributions of LacI as simulated with parameters sets #0 and #3
from Table 1. The degradation parameter δu is the only parameter that changes between the panels B-D.

0 6 12101

102

0 6 1210−1

100

101

102

µLacI and µλcI

A B C

Figure 2: Mean levels of (A) LacI and (B) λcI for the toggle model, 5 hours after induction with 0, 6, and 12 J/m2

ultraviolet radiation. (C) Five different parameter sets have been used corresponding to the data types that are
fully captured by the given parameter sets listed in Table 1. For example, the blue bars (color online) correspond to
parameter set #1, which matches the mean LacI level at t=5hr. Similarly, the red bars correspond to parameter set
#3, which matches the LacI marginal distributions at at t=5hr.
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Figure 3: Marginal probability densities for (A-C) LacI and (D-F) λcI for the toggle model, at 5 hours after induction
with 0, 6, and 12 J/m2 ultraviolet radiation. (B) Five different parameter sets have been used corresponding to the
data types that are fully captured by the given parameter sets listed in Table 1 (see Fig. 2C for legend.)

0 1 2 3 4 50

20

40

60

80

0 1 2 3 4 50

10

20

30

40

50

0 1 2 3 4 50

5

10

15

20

0 1 2 3 4 50

1

2

3

4

5

6

A B

D E F

µLacI and µλcI

0 J/m2 UV 6 J/m2 UV 12 J/m2 UV

0 J/m2 UV

6 J/m2 UV

12 J/m2 UV

Figure 4: Mean levels of (A) LacI and (D-E) λcI for the toggle model, as functions of time after induction with 0, 6,
and 12 J/m2 ultraviolet radiation. (B) Five different parameter sets have been used corresponding to the data types
that are fully captured by the given parameter sets listed in Table 2 (see also caption of Fig. 2.)
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